ImmunoCult™人CD3/CD28 T细胞激活剂

人T细胞活化扩增试剂

产品号 #(选择产品)

产品号 #10971_C

人T细胞活化扩增试剂

产品优势

  • 在不使用磁珠、饲养细胞或抗原的情况下,稳健地激活和扩增人类T细胞
  • 提供温和的激活刺激,维持激活和扩增T细胞的高活力
  • 高度稳定,过滤灭菌的可溶性试剂

What Our Scientist Says

We want to make it easier to activate and expand human T cells while still maintaining a high viability of these cells. That's why we developed ImmunoCult™ Human CD3/CD28 T Cell Activator.

Jessie YuScientist
Jessie Yu, Scientist

概述

在没有磁珠、喂养细胞或抗原的情况下,实现T细胞的强大激活和扩增。

本品温和的活化刺激,确保活化T细胞的高活力,并可进一步扩大免疫cult™-XF T细胞扩增培养基(目录#10981)或其他培养基培养人类T细胞。抗体复合物结合并交联CD3和CD28细胞表面配体,从而为T细胞激活提供所需的信号。ImmunoCult™人CD3/CD28 T细胞激活剂可用于Seahorse XF分析仪测量T细胞激活反应,也可作为Agilent Seahorse XF Hu T细胞激活检测试剂盒的一部分。

本产品是为研究应用而设计的。如果您需要适用于细胞治疗生产的试剂,ImmunoCult™人CD3/CD28 T细胞激活剂(目录#100-0784)是根据相关gmp生产的。

Contains
• Anti-human CD3 monospecific antibody complex
• Anti-human CD28 monospecific antibody complex
 
Subtype
Supplements
 
Cell Type
T Cells, T Cells, CD4+, T Cells, CD8+
 
Species
Human
 
Application
Activation, Cell Culture, Expansion
 
Brand
ImmunoCult
 
Area of Interest
Immunology, Cell Therapy Development
 

Data Figures

Activated Morphology of Human T Cells Stimulated With ImmunoCult™ Human CD3/CD28 T Cell Activator

Figure 1. Activated Morphology of Human T Cells Stimulated With ImmunoCult™ Human CD3/CD28 T Cell Activator

Image of human T cells isolated using the EasySep™ Human T Cell Isolation Kit (Catalog #17951), stimulated with ImmunoCult™ Human CD3/CD28 T Cell Activator, and cultured in ImmunoCult™-XF T Cell Expansion Medium (Catalog # 10981).

Activation of Human T Cells stimulated With ImmunoCult™ Human CD3/CD28 T Cell Activator

Figure 2. Activation of EasySep™-isolated Human T Cells stimulated With ImmunoCult™ Human CD3/CD28 T Cell Activator

EasySep™-isolated human T cells were stimulated with ImmunoCult™ Human CD3/CD28 T Cell Activator and cultured in ImmunoCult™-XF T Cell Expansion Medium. Activation of viable CD3+ T cells was assessed by CD25 expression using flow cytometry. On day 0, the frequency of CD25 positive cells was (A) 5.6 ± 2.4% (mean ± SD). Following 3 days of culture, the frequency of CD25 positive cells was (B) 75.4 ± 13.8% (mean ± SD) when stimulated with ImmunoCult™ Human CD3/CD28 T Cell Activator.

Robust Human T Cell Expansion with ImmunoCult™ Human CD3/CD28 T Cell Activator

Figure 3. Robust Human T Cell Expansion with ImmunoCult™ Human CD3/CD28 T Cell Activator

EasySep™-isolated human T cells were expanded over 12 days with ImmunoCult™ Human CD3/CD28 T Cell Activator in ImmunoCult™-XF T Cell Expansion Medium supplemented with Human Recombinant IL-2. On day 0, 1 x 10^6 EasySep™-isolated human T cells were stimulated with 25 μL of ImmunoCult™ Human CD3/CD28 T Cell Activator in ImmunoCult™-XF T Cell Expansion Medium supplemented with 10 ng/mL Human Recombinant IL-2. On days 3, 5, 7, and 10, viable cells were counted and fresh medium supplemented with IL-2 was added. No additional ImmunoCult™ Human CD3/CD28 T Cell Activator was added during the 12-day culture period (mean ± SD in 6 experiments with 3 donors).

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Catalog #
10971, 10991
Lot #
All
Language
English
Document Type
Safety Data Sheet
Catalog #
10971, 10991
Lot #
All
Language
English

Applications

This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.

Resources and Publications

Educational Materials (22)

Publications (5)

Competition between PAF1 and MLL1/COMPASS confers the opposing function of LEDGF/p75 in HIV latency and proviral reactivation. R. Gao et al. Science advances 2020 may

Abstract

Transcriptional status determines the HIV replicative state in infected patients. However, the transcriptional mechanisms for proviral replication control remain unclear. In this study, we show that, apart from its function in HIV integration, LEDGF/p75 differentially regulates HIV transcription in latency and proviral reactivation. During latency, LEDGF/p75 suppresses proviral transcription via promoter-proximal pausing of RNA polymerase II (Pol II) by recruiting PAF1 complex to the provirus. Following latency reversal, MLL1 complex competitively displaces PAF1 from the provirus through casein kinase II (CKII)-dependent association with LEDGF/p75. Depleting or pharmacologically inhibiting CKII prevents PAF1 dissociation and abrogates the recruitment of both MLL1 and Super Elongation Complex (SEC) to the provirus, thereby impairing transcriptional reactivation for latency reversal. These findings, therefore, provide a mechanistic understanding of how LEDGF/p75 coordinates its distinct regulatory functions at different stages of the post-integrated HIV life cycles. Targeting these mechanisms may have a therapeutic potential to eradicate HIV infection.
Gut-Liver Physiomimetics Reveal Paradoxical Modulation of IBD-Related Inflammation by Short-Chain Fatty Acids. M. Trapecar et al. Cell systems 2020 mar

Abstract

Although the association between the microbiome and IBD and liver diseases is known, the cause and effect remain elusive. By connecting human microphysiological systems of the gut, liver, and circulating Treg and Th17 cells, we created a multi-organ model of ulcerative colitis (UC) ex vivo. The approach shows microbiome-derived short-chain fatty acids (SCFAs) to either improve or worsen UC severity, depending on the involvement of effector CD4 T cells. Using multiomics, we found SCFAs increased production of ketone bodies, glycolysis, and lipogenesis, while markedly reducing innate immune activation of the UC gut. However, during acute T cell-mediated inflammation, SCFAs exacerbated CD4+ T cell-effector function, partially through metabolic reprograming, leading to gut barrier disruption and hepatic injury. These paradoxical findings underscore the emerging utility of human physiomimetic technology in combination with systems immunology to study causality and the fundamental entanglement of immunity, metabolism, and tissue homeostasis.
A Simple and Scalable Strategy for Analysis of Endogenous Protein Dynamics. M. K. Schwinn et al. Scientific reports 2020 jun

Abstract

The ability to analyze protein function in a native context is central to understanding cellular physiology. This study explores whether tagging endogenous proteins with a reporter is a scalable strategy for generating cell models that accurately quantitate protein dynamics. Specifically, it investigates whether CRISPR-mediated integration of the HiBiT luminescent peptide tag can easily be accomplished on a large-scale and whether integrated reporter faithfully represents target biology. For this purpose, a large set of proteins representing diverse structures and functions, some of which are known or potential drug targets, were targeted for tagging with HiBiT in multiple cell lines. Successful insertion was detected for 86{\%} of the targets, as determined by luminescence-based plate assays, blotting, and imaging. In order to determine whether endogenously tagged proteins yield more representative models, cells expressing HiBiT protein fusions either from endogenous loci or plasmids were directly compared in functional assays. In the tested cases, only the edited lines were capable of accurately reproducing the anticipated biology. This study provides evidence that cell lines expressing HiBiT fusions from endogenous loci can be rapidly generated for many different proteins and that these cellular models provide insight into protein function that may be unobtainable using overexpression-based approaches.

更多信息

更多信息
Species Human
Contains • Anti-human CD3 monospecific antibody complex • Anti-human CD28 monospecific antibody complex
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT STEMCELL, REFER TO WWW.STEMCELL.COM/COMPLIANCE.
版权 © 2025 STEMCELL Technologies 技术有限公司。保留所有权利。