IWR-1-endo potently inhibits WNT signaling by blocking a cell-based WNT/β-catenin pathway reporter response with an IC₅₀ value of 180 nM (Chen et al.). It inhibits WNT-induced accumulation of β-catenin, through stabilization of the destruction complex member AXIN2 (Chen et al.).
MAINTENANCE AND SELF-RENEWAL · Promotes self-renewal and maintains pluripotency of human embryonic stem cells and mouse Epi-stem cells when used in combination with CHIR99021 (Kim et al.).
DIFFERENTIATION · Promotes differentiation of cardiomyocytes from human pluripotent stem cells (PSCs) that have been induced to mesoderm by addition of Activin A and/or BMP4 (Ren et al.; Willems et al.) · Induces the differentiation of human PSC-derived alveolar epithelial type II (AETII) to AETI cells (Ghaedi et al.).
未找到
Protocols and Documentation
Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.
This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.
Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. Ghaedi M et al. The Journal of clinical investigation 2013 NOV
Abstract
The use of induced pluripotent stem cells (iPSCs) has been postulated to be the most effective strategy for developing patient-specific respiratory epithelial cells, which may be valuable for lung-related cell therapy and lung tissue engineering. We generated a relatively homogeneous population of alveolar epithelial type II (AETII) and type I (AETI) cells from human iPSCs that had phenotypic properties similar to those of mature human AETII and AETI cells. We used these cells to explore whether lung tissue can be regenerated in vitro. Consistent with an AETII phenotype, we found that up to 97% of cells were positive for surfactant protein C, 95% for mucin-1, 93% for surfactant protein B, and 89% for the epithelial marker CD54. Additionally, exposing induced AETII to a Wnt/β-catenin inhibitor (IWR-1) changed the iPSC-AETII-like phenotype to a predominantly AETI-like phenotype. We found that of induced AET1 cells, more than 90% were positive for type I markers, T1α, and caveolin-1. Acellular lung matrices were prepared from whole rat or human adult lungs treated with decellularization reagents, followed by seeding these matrices with alveolar cells derived from human iPSCs. Under appropriate culture conditions, these progenitor cells adhered to and proliferated within the 3D lung tissue scaffold and displayed markers of differentiated pulmonary epithelium.
Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Kim H et al. Nature communications 2013 JAN
Abstract
Wnt/β-catenin signalling has a variety of roles in regulating stem cell fates. Its specific role in mouse epiblast stem cell self-renewal, however, remains poorly understood. Here we show that Wnt/β-catenin functions in both self-renewal and differentiation in mouse epiblast stem cells. Stabilization and nuclear translocation of β-catenin and its subsequent binding to T-cell factors induces differentiation. Conversely, retention of stabilized β-catenin in the cytoplasm maintains self-renewal. Cytoplasmic retention of β-catenin is effected by stabilization of Axin2, a downstream target of β-catenin, or by genetic modifications to β-catenin that prevent its nuclear translocation. We also find that human embryonic stem cell and mouse epiblast stem cell fates are regulated by β-catenin through similar mechanisms. Our results elucidate a new role for β-catenin in stem cell self-renewal that is independent of its transcriptional activity and will have broad implications in understanding the molecular regulation of stem cell fate.
Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. Ren Y et al. Journal of molecular and cellular cardiology 2011 SEP
Abstract
Human induced pluripotent stem (iPS) cells potentially provide a unique resource for generating patient-specific cardiomyocytes to study cardiac disease mechanisms and treatments. However, existing approaches to cardiomyocyte production from human iPS cells are inefficient, limiting the application of iPS cells in basic and translational cardiac research. Furthermore, strategies to accurately record changes in iPS cell-derived cardiomyocyte action potential duration (APD) are needed to monitor APD-related cardiac disease and for rapid drug screening. We examined whether modulation of the bone morphogenetic protein 4 (BMP-4) and Wnt/β-catenin signaling pathways could induce efficient cardiac differentiation of human iPS cells. We found that early treatment of human iPS cells with BMP-4 followed by late treatment with small molecule Wnt inhibitors led to a marked increase in production of cardiomyocytes compared to existing differentiation strategies. Using immunocytochemical staining and real-time intracellular calcium imaging, we showed that these induced cardiomyocytes expressed typical sarcomeric markers, exhibited normal rhythmic Ca(2+) transients, and responded to both β-adrenergic and electric stimulation. Furthermore, human iPS cell-derived cardiomyocytes demonstrated characteristic changes in action potential duration in response to cardioactive drugs procainamide and verapamil using voltage-sensitive dye-based optical recording. Thus, modulation of the BMP-4 and Wnt signaling pathways in human iPS cells leads to highly efficient production of cardiomyocytes with typical electrophysiological function and pharmacologic responsiveness. The use of human iPS cell-derived cardiomyocytes and the application of calcium- and voltage-sensitive dyes for the direct, rapid measurement of iPS cell-derived cardiomyocyte activity promise to offer attractive platforms for studying cardiac disease mechanisms and therapeutics.
Thank you for your interest in IntestiCult™ Organoid Growth Medium (Human). Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they
can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our
privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT STEMCELL, REFER TO WWW.STEMCELL.COM/COMPLIANCE.