Z-VAD-FMK

抑制半胱天冬酶

产品号 #(选择产品)

产品号 #100-0534_C

抑制半胱天冬酶

总览

Z-VAD-FMK是一种细胞渗透性的合成肽,在体内抑制半胱天冬酶并阻断半胱天冬酶介导的细胞凋亡(Garcia-Calvo等;Xiang et al.)。Z-VAD-FMK可抑制人类胚胎干细胞分化,并提高人类胚胎干细胞在冷冻保存条件下的冻融存活率(Heng et al.)。

癌症研究
·阻断fas诱导的T淋巴细胞凋亡(Chow et al.)。

别名
Z-Val-Ala-Asp(OMe)-氟甲基酮
 
细胞类型
癌细胞及细胞系,淋巴细胞
 
研究领域
癌症
 
CAS 编号
187389-52-2
 
化学式
C22H30FN3O7
 
分子量
467.5 克/摩尔
 
纯度
≥ 95 %
 

Protocols and Documentation

Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.

Document Type
Product Name
Catalog #
Lot #
Language
Product Name
Z-VAD-FMK
Catalog #
100-0534, 100-0535
Lot #
All
Language
English
Document Type
Safety Data Sheet
Product Name
Z-VAD-FMK
Catalog #
100-0534, 100-0535
Lot #
All
Language
English

Resources and Publications

Educational Materials (4)

Publications (4)

Caspase inhibitor Z-VAD-FMK enhances the freeze-thaw survival rate of human embryonic stem cells. B. C. Heng et al. Bioscience reports 2007 oct

Abstract

Previous study demonstrated that the low survival of human embryonic stem cells (hESC) under conventional slow-cooling cryopreservation protocols is predominantly due to apoptosis rather than cellular necrosis. Hence, this study investigated whether a synthetic broad-spectrum irreversible inhibitor of caspase enzymes, Z-VAD-FMK can be used to enhance the post-thaw survival rate of hESC. About 100 mM Z-VAD-FMK was supplemented into either the freezing solution, the post-thaw culture media or both. Intact and adherent hESC colonies were cryopreserved so as to enable subsequent quantitation of the post-thaw cell survival rate through the MTT assay, which can only be performed with adherent cells. Exposure to 100 mM Z-VAD-FMK in the freezing solution alone did not significantly enhance the post-thaw survival rate (10.2{\%} vs. 9.9{\%}, p {\textgreater} 0.05). However, when 100 mM Z-VAD-FMK was added to the post-thaw culture media, there was a significant enhancement in the survival rate from 9.9{\%} to 14.4{\%} (p {\textless} 0.05), which was further increased to 18.7{\%} when Z-VAD-FMK was also added to the freezing solution as well (p {\textless} 0.01). Spontaneous differentiation of hESC after cryopreservation was assessed by morphological observations under bright-field microscopy, and by immunocytochemical staining for the pluripotency markers SSEA-3 and TRA-1-81. The results demonstrated that exposure to Z-VAD-FMK did not significantly enhance the spontaneous differentiation of hESC within post-thaw culture.
Inhibition of human caspases by peptide-based and macromolecular inhibitors. M. Garcia-Calvo et al. The Journal of biological chemistry 1998 dec

Abstract

Studies with peptide-based and macromolecular inhibitors of the caspase family of cysteine proteases have helped to define a central role for these enzymes in inflammation and mammalian apoptosis. A clear interpretation of these studies has been compromised by an incomplete understanding of the selectivity of these molecules. Here we describe the selectivity of several peptide-based inhibitors and the coxpox serpin CrmA against 10 human caspases. The peptide aldehydes that were examined (Ac-WEHD-CHO, Ac-DEVD-CHO, Ac-YVAD-CHO, t-butoxycarbonyl-IETD-CHO, and t-butoxycarbonyl-AEVD-CHO) included several that contain the optimal tetrapeptide recognition motif for various caspases. These aldehydes display a wide range of selectivities and potencies against these enzymes, with dissociation constants ranging from 75 pM to {\textgreater}10 microM. The halomethyl ketone benzyloxycarbonyl-VAD fluoromethyl ketone is a broad specificity irreversible caspase inhibitor, with second-order inactivation rates that range from 2.9 x 10(2) M-1 s-1 for caspase-2 to 2.8 x 10(5) M-1 s-1 for caspase-1. The results obtained with peptide-based inhibitors are in accord with those predicted from the substrate specificity studies described earlier. The cowpox serpin CrmA is a potent (Ki {\textless} 20 nM) and selective inhibitor of Group I caspases (caspase-1, -4, and -5) and most Group III caspases (caspase-8, -9, and -10), suggesting that this virus facilitates infection through inhibition of both apoptosis and the host inflammatory response.
BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. J. Xiang et al. Proceedings of the National Academy of Sciences of the United States of America 1996 dec

Abstract

Expression of BAX, without another death stimulus, proved sufficient to induce a common pathway of apoptosis. This included the activation of interleukin 1 beta-converting enzyme (ICE)-like proteases with cleavage of the endogenous substrates poly(ADP ribose) polymerase and D4-GDI (GDP dissociation inhibitor for the rho family), as well as the fluorogenic peptide acetyl-Asp-Glu-Val-Asp-aminotrifluoromethylcoumarin (DEVD-AFC). The inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) successfully blocked this protease activity and prevented FAS-induced death but not BAX-induced death. Blocking ICE-like protease activity prevented the cleavage of nuclear and cytosolic substrates and the DNA degradation that followed BAX induction. However, the fall in mitochondrial membrane potential, production of reactive oxygen species, cytoplasmic vacuolation, and plasma membrane permeability that are downstream of BAX still occurred. Thus, BAX-induced alterations in mitochondrial function and subsequent cell death do not apparently require the known ICE-like proteases.

更多信息

更多信息
Molecular Weight 467.5 g/mol
Alternative Names Z-Val-Ala-Asp-(OMe)-fluoromethyl ketone; ZVAD(OMe)-FMK
Cas Number 187389-52-2
Chemical Formula C22H30FN3O7
Purity ≥ 95%
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT STEMCELL, REFER TO WWW.STEMCELL.COM/COMPLIANCE.
版权 © 2025 STEMCELL Technologies 技术有限公司。保留所有权利。