Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines. S. R. Millon et al. Breast cancer research and treatment 2011 feb
Abstract
This study quantifies uptake of a fluorescent glucose analog, (2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose) (2-NBDG), in a large panel of breast cancer cells and demonstrates potential to monitor changes in glycolysis caused by anticancer and endocrine therapies. Expressions of glucose transporter (GLUT 1) and hexokinase (HK I), which phosphorylates 2-NBDG, were measured via western blot in two normal mammary epithelial and eight breast cancer cell lines of varying biological subtype. Fluorescence intensity of each cell line labeled with 100 lM 2-NBDG for 20 min or unlabeled control was quantified. A subset of cancer cells was treated with anticancer and endocrine therapies, and 2-NBDG fluorescence changes were measured. Expression of GLUT 1 was necessary for uptake of 2-NBDG, as demonstrated by lack of 2-NBDG uptake in normal human mammary epithelial cells (HMECs). GLUT 1 expression and 2-NBDG uptake was ubiquitous among all breast cancer lines. Reduction and stimulation of 2-NBDG uptake was demonstrated by perturbation with anticancer agents, lonidamine (LND), and a-cyano-hydroxycinnamate (a-Cinn), respectively. LND directly inhibits HK and significantly reduced 2-NBDG fluorescence in a subset of two breast cancer cell lines. Conversely, when cells were treated with a-Cinn, a drug used to increase glycolysis, 2-NBDG uptake was increased. Furthermore, tamoxifen (tam), a common endocrine therapy, was administered to estrogen receptor positive and negative (ER?/-) breast cells and demonstrated a decreased 2-NBDG uptake in ER? cells, reflecting a decrease in glycolysis. Results indicate that 2-NBDG uptake can be used to measure changes in glycolysis and has potential for use in early drug development.
2-NBDG as a fluorescent indicator for direct glucose uptake measurement. C. Zou et al. Journal of biochemical and biophysical methods 2005 sep
Abstract
Evaluation of glucose uptake ability in cells plays a fundamental role in diabetes mellitus research. In this study, we describe a sensitive and non-radioactive assay for direct and rapid measuring glucose uptake in single, living cells. The assay is based on direct incubation of mammalian cells with a fluorescent d-glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) followed by flow cytometric detection of fluorescence produced by the cells. A series of experiments were conducted to define optimal conditions for this assay. By this technique, it was found that insulin lost its physiological effects on cells in vitro meanwhile some other anti-diabetic drugs facilitated the cell glucose uptake rates with mechanisms which likely to be different from those of insulin or those that were generally accepted of each drug. Our findings show that this technology has potential for applications in both medicine and research.
A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. K. Yoshioka et al. Biochimica et biophysica acta 1996 feb
Abstract
A novel fluorescent derivative of glucose was synthesized by reacting D-glucosamine and NBD-Cl. The TLC analysis of the reaction mixture showed the generation of a single spot with intense fluorescence (lambda Ex = 475 nm, lambda Em = 550 nm). The obtained novel fluorescent product, which was identified as 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) by 1H-NMR and FAB-MS spectrometries, was applied to the assessment of the glucose uptake activity of Escherichia coli B. 2-NBDG accumulated in living cells and not in dead cells. The uptake of 2-NBDG was competitively inhibited by D-glucose and not by L-glucose, which suggested the involvement of the glucose transporting system in the uptake of 2-NBDG. 2-NBDG taken into the cytoplasma of E. coli cells was supposedly converted into another derivative in the glucose metabolic pathway.
Thank you for your interest in IntestiCult™ Organoid Growth Medium (Human). Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they
can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our
privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
更多信息
更多信息
Molecular Weight
342.3 g/mol
Alternative Names
NBD-Glucose
Cas Number
186689-07-6
Chemical Formula
C12H14N4O8
Purity
≥ 98%
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT STEMCELL, REFER TO WWW.STEMCELL.COM/COMPLIANCE.