AggreWell™ EB Formation Medium is a serum-free medium that supports the survival of TeSR™-cultured human embryonic stem (ES) cells or human induced pluripotent stem (iPS) cells during generation and subsequent culture of embryoid bodies (EBs).
未找到
Protocols and Documentation
Find supporting information and directions for use in the Product Information Sheet or explore additional protocols below.
This product is designed for use in the following research area(s) as part of the highlighted workflow stage(s). Explore these workflows to learn more about the other products we offer to support each research area.
Fibromodulin reprogrammed cells: A novel cell source for bone regeneration. Li C-S et al. Biomaterials 2016 MAR
Abstract
Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration.
Reprogramming of HUVECs into induced pluripotent stem cells (HiPSCs), generation and characterization of HiPSC-derived neurons and astrocytes Haile Y et al. PLoS ONE 2015 MAR
Abstract
Neurodegenerative diseases are characterized by chronic and progressive structural or functional loss of neurons. Limitations related to the animal models of these human diseases have impeded the development of effective drugs. This emphasizes the need to establish disease models using human-derived cells. The discovery of induced pluripotent stem cell (iPSC) technology has provided novel opportunities in disease modeling, drug development, screening, and the potential for patient-matched" cellular therapies in neurodegenerative diseases. In this study�
Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells. Gordon DJ et al. Oncogene 2015 JUN
Abstract
Oncogenic transformation in Ewing sarcoma tumors is driven by the fusion oncogene EWS-FLI1. However, despite the well-established role of EWS-FLI1 in tumor initiation, the development of models of Ewing sarcoma in human cells with defined genetic elements has been challenging. Here, we report a novel approach to model the initiation of Ewing sarcoma tumorigenesis that exploits the developmental and pluripotent potential of human embryonic stem cells. The inducible expression of EWS-FLI1 in embryoid bodies, or collections of differentiating stem cells, generates cells with properties of Ewing sarcoma tumors, including characteristics of transformation. These cell lines exhibit anchorage-independent growth, a lack of contact inhibition and a strong Ewing sarcoma gene expression signature. Furthermore, these cells also demonstrate a requirement for the persistent expression of EWS-FLI1 for cell survival and growth, which is a hallmark of Ewing sarcoma tumors.Oncogene advance online publication, 12 October 2015; doi:10.1038/onc.2015.368.
Thank you for your interest in IntestiCult™ Organoid Growth Medium (Human). Please provide us with your contact information and your local representative will contact you with a customized quote. Where appropriate, they
can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to STEMCELL Technologies Canada Inc. and its subsidiaries and affiliates (“STEMCELL”) to collect and use your information, and send you newsletters and emails in accordance with our
privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Legal Statement: This product was developed under license to intellectual property owned by WiCell™ Research Institute (patent pending). This product is sold for research use only (whether the buyer is an academic or for-profit entity) under a non-transferable, limited-use license. Purchase of this product does not include the right to sell, use or otherwise transfer this product for commercial purposes (i.e., any activity undertaken for consideration, such as use of this product for manufacturing, or resale of this product or any materials made using this product, or use of this product or any materials made using this product to provide services) or clinical use (i.e., administration of this product or any material using this product to humans) or the right to implant any material made using this product into an animal by, or in collaboration with, a for-profit entity, for purposes other than basic pre-clinical research applications (including without limitation teratoma assays) to validate the function of the cells. Purchasers wishing to use the product for purposes other than research use should contact Geron Corporation’s Business Development office at (650) 473-7700 or corpdev@geron.com. Purchasers who do not agree to the terms and conditions set forth above should return the product in acceptable conditions to the seller for a refund. PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED.